More work on hard sell at the end
This commit is contained in:
parent
052682ec45
commit
382f33e831
@ -239,6 +239,21 @@ will return most cost benefit.
|
||||
http://www.youtube.com/watch?v=rcNeorjXMrE
|
||||
|
||||
\end{frame}
|
||||
\section{FMECA - Failure Modes Effects and Criticallity Analysis}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{ FMECA - Failure Modes Effects and Criticallity Analysis}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=100pt]{./military-aircraft-desktop-computer-wallpaper-missile-launch.jpg}
|
||||
% military-aircraft-desktop-computer-wallpaper-missile-launch.jpg: 1024x768 pixel, 300dpi, 8.67x6.50 cm, bb=0 0 246 184
|
||||
\caption{Military Aircraft}
|
||||
\label{fig:f16missile}
|
||||
\end{figure}
|
||||
Emphasis on determining criticallity of failure.
|
||||
Applies some baysian statistics (probabilities of component failues and those causing given system level failures).
|
||||
\end{frame}
|
||||
|
||||
|
||||
\section{FMECA - Failure Modes Effects and Criticallity Analysis}
|
||||
@ -292,6 +307,17 @@ for a project manager.
|
||||
|
||||
|
||||
\section{FMEDA - Failure Modes Effects and Diagnostic Analysis}
|
||||
\begin{frame}
|
||||
\frametitle{ FMEDA - Failure Modes Effects and Diagnostic Analysis}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=200pt]{./SIL.jpg}
|
||||
% SIL.jpg: 350x286 pixel, 72dpi, 12.35x10.09 cm, bb=0 0 350 286
|
||||
\caption{SIL requirements}
|
||||
\end{figure}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{ FMEDA - Failure Modes Effects and Diagnostic Analysis}
|
||||
FMEDA is the methodology behind statistical (safety integrity level)
|
||||
@ -337,14 +363,16 @@ $$ DiagnosticCoverage = \Sigma\lambda_{DD} / \Sigma\lambda_D $$
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{ FMEDA - Failure Modes Effects and Diagnostic Analysis}
|
||||
The diagnostic coverage for safe failures, where $\Sigma\lambda_{SD}$ represents the percentage of
|
||||
The \textbf{diagnostic coverage} for safe failures, where $\Sigma\lambda_{SD}$ represents the percentage of
|
||||
safe detected base component failure modes,
|
||||
and $\Sigma\lambda_S$ the total number of safe base component failure modes,
|
||||
is given as
|
||||
|
||||
$$ SF = \frac{\Sigma\lambda_{SD}}{\Sigma\lambda_S} $$
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{ FMEDA - Failure Modes Effects and Diagnostic Analysis}
|
||||
\textbf{Safe Failure Fraction.}
|
||||
A key concept in FMEDA is Safe Failure Fraction (SFF).
|
||||
This is the ratio of safe and dangerous detected failures
|
||||
@ -404,7 +432,7 @@ part of product approval for many regulated products in the EU and the USA...
|
||||
\section{FMEA used for Safety Critical Approvals}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Safety Critical Approvals FMEA}
|
||||
\frametitle{DESIGN FMEA: Safety Critical Approvals FMEA}
|
||||
Experts from Approval House and Equipment Manufacturer
|
||||
discuss selected component failure modes
|
||||
judged to be in critical sections of the product.
|
||||
@ -420,7 +448,7 @@ judged to be in critical sections of the product.
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Safety Critical Approvals FMEA}
|
||||
\frametitle{DESIGN FMEA: Safety Critical Approvals FMEA}
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
@ -433,7 +461,7 @@ judged to be in critical sections of the product.
|
||||
\begin{itemize}
|
||||
\pause \item Impossible to look at all component failures let alone apply FMEA rigorously.
|
||||
\pause \item In practise, failure scenarios for critical sections are contested, and either justified or extra safety measures implemented.
|
||||
\pause \item Meeting notes or minutes only.
|
||||
\pause \item Often Meeting notes or minutes only. Unusual for detailed arguments to be documented.
|
||||
\end{itemize}
|
||||
|
||||
\end{frame}
|
||||
@ -472,7 +500,7 @@ judged to be in critical sections of the product.
|
||||
\end{frame}
|
||||
\section{Failure Mode Modular De-Composition}
|
||||
\begin{frame}
|
||||
|
||||
\frametitle{FMMD - Failure Mode Modular De-Composition}
|
||||
% Consider the FMEA type methodologies
|
||||
% where we look at all the failure modes in a system, and then
|
||||
% see how they can affect all other components within it,
|
||||
@ -492,31 +520,42 @@ judged to be in critical sections of the product.
|
||||
|
||||
The FMMD methodology breaks the analysis down into small stages,
|
||||
by making the analyst choose functional groups of components, to which FMEA is applied.
|
||||
When analysed, we will have a set of symptoms of failure for the functional group.
|
||||
We can then create a derived~component,
|
||||
to represent the functional group.
|
||||
When analysed, a set of symptoms of failure for the functional group is used create a derived~component.
|
||||
The derived components failure modes, are the symptoms of the functional group
|
||||
from which it was derived.
|
||||
We can use derived components to form `higher~level' functional groups.
|
||||
This creates an analysis hierarchy.
|
||||
|
||||
This addresses the state explosion (where $O$ is order
|
||||
of complexity) $O=N^2$ inherent in equation~\ref{eqn:fmea_state_exp}.
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{FMMD - Failure Mode Modular De-Composition}
|
||||
We can view the functional groups in FMMD as forming a hierarchy.
|
||||
If for the sake of example we consider each functional group to
|
||||
be three components, the figure below shows
|
||||
how the levels work and converge to a top or system level.
|
||||
|
||||
% \begin{figure}
|
||||
% \centering
|
||||
% \includegraphics[width=300pt]{./three_tree.png}
|
||||
% % three_tree.png: 780x226 pixel, 72dpi, 27.52x7.97 cm, bb=0 0 780 226
|
||||
% \caption{Functional Group Tree example}
|
||||
% \label{fig:three_tree}
|
||||
% \end{figure}
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=300pt]{./three_tree.png}
|
||||
% three_tree.png: 780x226 pixel, 72dpi, 27.52x7.97 cm, bb=0 0 780 226
|
||||
\caption{Functional Group Tree example}
|
||||
\label{fig:three_tree}
|
||||
\end{figure}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{FMMD - Failure Mode Modular De-Composition}
|
||||
The fact FMMD analyses small groups of components at a time, and organises them
|
||||
into a hierarchy
|
||||
addresses the state explosion (where $O$ is order
|
||||
of complexity) $O=N^2$ inherent in equation
|
||||
|
||||
\begin{equation}
|
||||
\label{eqn:fmea_single2}
|
||||
N.(N-1).cfm % \\
|
||||
%(N^2 - N).cfm
|
||||
\end{equation}
|
||||
|
||||
|
||||
We can represent the number of failure scenarios to check in an FMMD hierarchy
|
||||
with equation~\ref{eqn:anscen}.
|
||||
|
||||
@ -524,49 +563,58 @@ with equation~\ref{eqn:anscen}.
|
||||
\label{eqn:anscen}
|
||||
\sum_{n=0}^{L} {fgn}^{n}.fgn.cfm.(fgn-1)
|
||||
\end{equation}
|
||||
|
||||
Where $fgn$ is the number of components in each functional group,
|
||||
and $cfm$ is the number of failure modes per component
|
||||
and L is the number of levels, the number of
|
||||
analysis scenarios to consider is show in equation~\ref{eqn:anscen}.
|
||||
|
||||
~\ref{eqn:fmea_state_exp}.
|
||||
|
||||
So for a very simple analysis with three components forming a functional group where
|
||||
each component has three failure modes, we have only one level (zero'th).
|
||||
So to check every failure modes against the other components in the functional group
|
||||
requires 18 checks.
|
||||
|
||||
\begin{equation}
|
||||
\label{eqn:anscen2}
|
||||
\sum_{n=0}^{0} {3}^{0}.3.3.(3-1) = 18
|
||||
\end{equation}
|
||||
\clearpage
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
In other words, we have three components in our functional group,
|
||||
and nine failure modes to consider.
|
||||
So taking each failure mode and looking at how that could affect the functional group,
|
||||
we must compare each failure mode against the two other components (the `$fgn-1$' term).
|
||||
|
||||
For the one `zero' level FMMD case we are doing the same thing as FMEA type analysis
|
||||
(but on a very simple small sub-system).
|
||||
We are looking at how each failure~mode can effect the system/top level.
|
||||
We can use equation~\ref{eqn:fmea_state_exp44} to represent
|
||||
the number of checks to rigorously perform FMEA, where $N$ is the total
|
||||
number of components in the system, and $cfm$ is the number of failures per component.
|
||||
% So for a very simple analysis with three components forming a functional group where
|
||||
% each component has three failure modes, we have only one level (zero'th).
|
||||
% So to check every failure modes against the other components in the functional group
|
||||
% requires 18 checks.
|
||||
%
|
||||
% \begin{equation}
|
||||
% \label{eqn:anscen2}
|
||||
% \sum_{n=0}^{0} {3}^{0}.3.3.(3-1) = 18
|
||||
% \end{equation}
|
||||
% \clearpage
|
||||
%
|
||||
%
|
||||
%
|
||||
% In other words, we have three components in our functional group,
|
||||
% and nine failure modes to consider.
|
||||
% So taking each failure mode and looking at how that could affect the functional group,
|
||||
% we must compare each failure mode against the two other components (the `$fgn-1$' term).
|
||||
%
|
||||
% For the one `zero' level FMMD case we are doing the same thing as FMEA type analysis
|
||||
% (but on a very simple small sub-system).
|
||||
% We are looking at how each failure~mode can effect the system/top level.
|
||||
% We can use equation~\ref{eqn:fmea_state_exp44} to represent
|
||||
% the number of checks to rigorously perform FMEA, where $N$ is the total
|
||||
% number of components in the system, and $cfm$ is the number of failures per component.
|
||||
|
||||
|
||||
|
||||
Where $N=3$ and $cfm=3$ we can see that the number of checks for this simple functional
|
||||
group is the same for equation~\ref{eqn:fmea_state_exp22}
|
||||
and equation~\ref{eqn:anscen}.
|
||||
\clearpage
|
||||
%
|
||||
% Where $N=3$ and $cfm=3$ we can see that the number of checks for this simple functional
|
||||
% group is the same for equation~\ref{eqn:fmea_state_exp22}
|
||||
% and equation~\ref{eqn:anscen}.
|
||||
% \clearpage
|
||||
|
||||
%\section{Example}
|
||||
|
||||
To see the effects of reducing `state~explosion' we need to look at a larger system.
|
||||
Let us take a system with 3 levels and apply these formulae.
|
||||
\begin{frame}
|
||||
\frametitle{FMMD - Failure Mode Modular De-Composition}
|
||||
To see the effects of reducing `state~explosion' we can use an example.
|
||||
% with fixed numbers
|
||||
%for components in a functional group, and failure modes per component.
|
||||
Let us take a system with 3 levels,
|
||||
with three components per functional group and three failure modes per component,
|
||||
and apply these formulae.
|
||||
Having three levels (in addition to the top zero'th level)
|
||||
will require 81 base level components.
|
||||
|
||||
@ -584,7 +632,11 @@ $$
|
||||
\sum_{n=0}^{3} {3}^{n}.3.3.(2) = 720
|
||||
%\end{equation}
|
||||
$$
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{FMMD - Failure Mode Modular De-Composition}
|
||||
Thus for FMMD we needed to examine 720 failure mode scenarios, and for traditional FMEA
|
||||
type analysis methods 19440.
|
||||
% In practical example followed through, no more than 9 components have ever been required for a functional
|
||||
@ -593,13 +645,16 @@ type analysis methods 19440.
|
||||
% and 12 failure modes per component) and apply the formulas for a 4 level analysis
|
||||
% (i.e.
|
||||
|
||||
\clearpage
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{FMMD - Failure Mode Modular De-Composition}
|
||||
|
||||
Note that for all possible double simultaneous failures the equation~\ref{eqn:fmea_state_exp} becomes
|
||||
equation~\ref{eqn:fmea_state_exp2} essentially making the order $N^3$.
|
||||
The FMMD case (equation~\ref{eqn:anscen2}), is cubic within the functional groups only,
|
||||
not all the components in the system.
|
||||
|
||||
|
||||
\begin{equation}
|
||||
\label{eqn:fmea_state_exp2}
|
||||
N.(N-1).(N-2).cfm % \\
|
||||
@ -610,6 +665,53 @@ not all the components in the system.
|
||||
\label{eqn:anscen2}
|
||||
\sum_{n=0}^{L} {fgn}^{n}.fgn.cfm.(fgn-1).(fgn-2)
|
||||
\end{equation}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{FMMD - Failure Mode Modular De-Composition}
|
||||
\textbf{traceability}
|
||||
Because each reasoning stage contains associations ($FailureMode \mapsto Sypmtom$)
|
||||
we can trace the `reasoning' from base level component failure mode to top level/system
|
||||
failure.
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{FMMD - Failure Mode Modular De-Composition}
|
||||
\textbf{re-usability}
|
||||
Electronic Systems use commonly re-used functional groups (such as potential~dividers, amplifier configurations etc)
|
||||
Once a derived component is determined, it can generally be used in other projects.
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{FMMD - Failure Mode Modular De-Composition}
|
||||
\textbf{total coverage}
|
||||
With FMMD we can ensure that all component failure modes
|
||||
have been represented as a symptom in the derived components created from them.
|
||||
We can thus apply automated checking to ensure that no
|
||||
failure modes, from base or derived components have been
|
||||
missed in an analysis.
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{FMMD - Failure Mode Modular De-Composition}
|
||||
\textbf{Conclusion: FMMD}
|
||||
|
||||
\begin{itemize}
|
||||
\pause \item Addresses State Explosion
|
||||
\pause \item Addresses total coverage of all cooomponents and their failure modes
|
||||
\pause \item Provides tracable reasoning
|
||||
\pause \item derived components are re-useable
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{FMMD - Failure Mode Modular De-Composition}
|
||||
\textbf{Questions?}
|
||||
\end{frame}
|
||||
|
||||
\end{document}
|
||||
|
Loading…
Reference in New Issue
Block a user