added double fault diagrams
This commit is contained in:
parent
7a0e1b0e76
commit
376e20401a
BIN
pt100/plddouble.dia
Normal file
BIN
pt100/plddouble.dia
Normal file
Binary file not shown.
BIN
pt100/plddouble.jpg
Normal file
BIN
pt100/plddouble.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 75 KiB |
BIN
pt100/plddoublesymptom.dia
Normal file
BIN
pt100/plddoublesymptom.dia
Normal file
Binary file not shown.
BIN
pt100/plddoublesymptom.jpg
Normal file
BIN
pt100/plddoublesymptom.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 101 KiB |
103
pt100/pt100.tex
103
pt100/pt100.tex
@ -268,7 +268,7 @@ and are thus enclosed by one contour each.
|
|||||||
\label{fig:pt100_tc}
|
\label{fig:pt100_tc}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
ating input Fault
|
%ating input Fault
|
||||||
This circuit supplies two results, sense+ and sense- voltage readings.
|
This circuit supplies two results, sense+ and sense- voltage readings.
|
||||||
To establish the valid voltage ranges for these, and knowing our
|
To establish the valid voltage ranges for these, and knowing our
|
||||||
valid temperature range for this example ({0\oc} .. {300\oc}) we can calculate
|
valid temperature range for this example ({0\oc} .. {300\oc}) we can calculate
|
||||||
@ -612,19 +612,42 @@ TC 18: & $R_2$ SHORT $R_3$ SHORT & low & low & Both out of Rang
|
|||||||
|
|
||||||
\subsection{Verifying complete coverage for a \\ cardinality constrained powerset of 2}
|
\subsection{Verifying complete coverage for a \\ cardinality constrained powerset of 2}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
It is important to check that we have covered all possible double fault combinations.
|
It is important to check that we have covered all possible double fault combinations.
|
||||||
We can use the equation \ref{eqn:correctedccps2}, reproduced below to verify this.
|
We can use the equation \ref{eqn:correctedccps2}
|
||||||
|
\ifthenelse {\boolean{paper}}
|
||||||
|
{
|
||||||
|
from the definitions paper
|
||||||
|
\ref{pap:compdef}
|
||||||
|
,
|
||||||
|
reproduced below to verify this.
|
||||||
|
|
||||||
|
\indent{
|
||||||
|
where:
|
||||||
|
\begin{itemize}
|
||||||
|
\item The set $SU$ represents the components in the functional~group.
|
||||||
|
\item The function $FM$ takes a component as an argument and returns its set of failure modes.
|
||||||
|
\item $cc$ is the cardinality constraint, here 2 as we are interested in double and single faults.
|
||||||
|
\end{itemize}
|
||||||
|
}
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
|{\mathcal{P}_{cc}SU}| = {\sum^{k}_{1..cc} \frac{|{SU}|!}{k!(|{SU}| - k)!}}
|
|{\mathcal{P}_{cc}SU}| = {\sum^{k}_{1..cc} \frac{|{SU}|!}{k!(|{SU}| - k)!}}
|
||||||
- \sum^{p}_{2..cc}{{\sum^{j}_{j \in J} \frac{|FM({C_j})|!}{p!(|FM({C_j})| - p)!}} }
|
- \sum^{p}_{2..cc}{{\sum^{j}_{j \in J} \frac{|FM({C_j})|!}{p!(|FM({C_j})| - p)!}} }
|
||||||
%\label{eqn:correctedccps2}
|
\label{eqn:correctedccps2}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
|
}
|
||||||
|
{
|
||||||
|
\begin{equation}
|
||||||
|
|{\mathcal{P}_{cc}SU}| = {\sum^{k}_{1..cc} \frac{|{SU}|!}{k!(|{SU}| - k)!}}
|
||||||
|
- \sum^{p}_{2..cc}{{\sum^{j}_{j \in J} \frac{|FM({C_j})|!}{p!(|FM({C_j})| - p)!}} }
|
||||||
|
%\label{eqn:correctedccps2}
|
||||||
|
\end{equation}
|
||||||
|
}
|
||||||
|
|
||||||
$|FM(C_j)|$ is always 2 here, as all the components are resistors and have two failure modes.
|
|
||||||
|
$|FM(C_j)|$ will always be 2 here, as all the components are resistors and have two failure modes.
|
||||||
|
|
||||||
%
|
%
|
||||||
% Factorial of zero is one ! You can only arrange an empty set one way !
|
% Factorial of zero is one ! You can only arrange an empty set one way !
|
||||||
@ -740,13 +763,77 @@ The sense- value will be out of range.
|
|||||||
This shorts the sense+ and sense- to Vcc.
|
This shorts the sense+ and sense- to Vcc.
|
||||||
Both values will be out of range.
|
Both values will be out of range.
|
||||||
|
|
||||||
|
\clearpage
|
||||||
|
\subsection{Double Faults Represented on a PLD Diagram}
|
||||||
|
|
||||||
|
We can show the test cases on a diagram with the double faults residing on regions
|
||||||
|
corresponding to overlapping contours see figure \ref{fig:plddouble}.
|
||||||
|
Thus $TC\_18$ will be enclosed by the $R2\_SHORT$ contour and the $R3\_SHORT$ contour.
|
||||||
|
|
||||||
|
|
||||||
|
\begin{figure}[h]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=450pt,bb=0 0 730 641,keepaspectratio=true]{pt100/plddouble.jpg}
|
||||||
|
% plddouble.jpg: 730x641 pixel, 72dpi, 25.75x22.61 cm, bb=0 0 730 641
|
||||||
|
\caption{PT100 Double Simultaneous Faults}
|
||||||
|
\label{fig:plddouble}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
The usefulnes of equation \ref{eqn:correctedccps2} is apparent. From the diagram it is easy to verify
|
||||||
|
the number of failure modes considered for each test case, but complete coverage for
|
||||||
|
a given cardinality constraint is not visually obvious.
|
||||||
|
|
||||||
|
\subsubsection{Symptom Extraction}
|
||||||
|
|
||||||
|
We can now examine the results of the test case analysis and apply symptom abstraction.
|
||||||
|
In all the test case results we have at least one an out of range value, except for
|
||||||
|
$TC\_7$
|
||||||
|
which has two unknown values/floating readings. We can collect all the faults, except $TC\_7$,
|
||||||
|
into the symptom $OUT\_OF\_RANGE$.
|
||||||
|
As a symptom $TC\_7$ could be described as $FLOATING$. We can thus draw a PLD diagram representing the
|
||||||
|
failure modes of this functional~group, the pt100 circuit from the perspective of double simultaneous failures,
|
||||||
|
in figure \ref{fig:dubsim}.
|
||||||
|
|
||||||
|
|
||||||
|
\begin{figure}[h]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=450pt,bb=0 0 730 641,keepaspectratio=true]{pt100/plddoublesymptom.jpg}
|
||||||
|
% plddouble.jpg: 730x641 pixel, 72dpi, 25.75x22.61 cm, bb=0 0 730 641
|
||||||
|
\caption{PT100 Double Simultaneous Faults}
|
||||||
|
\label{fig:plddoublesymptom}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
\clearpage
|
||||||
|
\subsection{Derived Component : The PT100 Circuit}
|
||||||
|
The PT100 circuit again, can now be treated as a component in its own right, and has two failure modes,
|
||||||
|
{\textbf{OUT\_OF\_RANGE}} and {\textbf{FLOATING}}. It can now be represented as a PLD see figure \ref{fig:pt100_doublef}.
|
||||||
|
|
||||||
|
\begin{figure}[h]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=100pt,bb=0 0 167 194,keepaspectratio=true]{./pt100/pt100_doublef.jpg}
|
||||||
|
% pt100_singlef.jpg: 167x194 pixel, 72dpi, 5.89x6.84 cm, bb=0 0 167 194
|
||||||
|
\caption{PT100 Circuit Failure Modes : From Double Faults Analysis}
|
||||||
|
\label{fig:pt100_doublef}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\subsection{Statistics}
|
||||||
|
|
||||||
|
If we consider the failure modes to be statistically independent we can calculate
|
||||||
|
the FIT values for all the failures. The failure mode of concern, the undetectable {\textbf{FLOATING}} condition
|
||||||
|
requires that resistors $R_1$ and $R_2$ fail. We can multiply the MTTF
|
||||||
|
together and find an MTTF for both failing. The FIT value of 12.42 corresponds to
|
||||||
|
$12.42 \times {10}^{-9}$ failures per hour. Squaring this gives $ 154.3 \times {10}^{-18} $.
|
||||||
|
This is an astronomically small MTTF, and so small that it would
|
||||||
|
probably fall below a threshold to sensibly consider.
|
||||||
|
However, it is very interesting from a failure analysis perspective,
|
||||||
|
because here we have found a fault that we cannot detect at this
|
||||||
|
level. This means that should we wish to cope with
|
||||||
|
this fault, we need to devise a way of detecting this
|
||||||
|
condition in higher levels of the system.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\vspace{20pt}
|
\vspace{20pt}
|
||||||
|
|
||||||
typeset in {\Huge \LaTeX} \today
|
%typeset in {\Huge \LaTeX} \today
|
||||||
|
|
||||||
|
BIN
pt100/pt100_doublef.dia
Normal file
BIN
pt100/pt100_doublef.dia
Normal file
Binary file not shown.
BIN
pt100/pt100_doublef.jpg
Normal file
BIN
pt100/pt100_doublef.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 9.0 KiB |
Loading…
Reference in New Issue
Block a user