reasoning for diff dual op-amp example circuit
This commit is contained in:
parent
aca6570318
commit
1ad4d0889b
@ -23,6 +23,8 @@
|
|||||||
Circuits from email conversation.
|
Circuits from email conversation.
|
||||||
Not a document to be proof read.
|
Not a document to be proof read.
|
||||||
Proof of analysis concept.
|
Proof of analysis concept.
|
||||||
|
|
||||||
|
Function fm() applied to a component returns its failure modes.
|
||||||
\end{abstract}
|
\end{abstract}
|
||||||
\clearpage
|
\clearpage
|
||||||
\section{Op-Amp circuit 1}
|
\section{Op-Amp circuit 1}
|
||||||
@ -36,6 +38,157 @@ Proof of analysis concept.
|
|||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
The amplifier in figure~\ref{fig:circuit1} amplifies the difference between
|
||||||
|
the voltages $+V1$ and $+V2$.
|
||||||
|
It would be desirable to represent this circuit as a derived component called say $DiffAMP$.
|
||||||
|
We begin by identifying functional groups from the components in the circuit.
|
||||||
|
|
||||||
|
|
||||||
|
\subsection{Functional Group: Potential Divider}
|
||||||
|
|
||||||
|
R1 and R2 perform as a potential divider.
|
||||||
|
Resistors can fail OPEN and SHORT.
|
||||||
|
$$ fm(R) = \{ OPEN, SHORT \}$$
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\begin{table}[ht]
|
||||||
|
\caption{Potential Divider $PD$: Failure Mode Effects Analysis: Single Faults} % title of Table
|
||||||
|
\centering % used for centering table
|
||||||
|
\begin{tabular}{||l|c|c|l|l||}
|
||||||
|
\hline \hline
|
||||||
|
\textbf{Test} & \textbf{Pot.Div} & \textbf{ } & \textbf{General} \\
|
||||||
|
\textbf{Case} & \textbf{Effect} & \textbf{ } & \textbf{Symtom Description} \\
|
||||||
|
% R & wire & res + & res - & description
|
||||||
|
\hline
|
||||||
|
\hline
|
||||||
|
TC1: $R_1$ SHORT & LOW & & LowPD \\
|
||||||
|
TC2: $R_1$ OPEN & HIGH & & HighPD \\ \hline
|
||||||
|
TC3: $R_2$ SHORT & HIGH & & HighPD \\
|
||||||
|
TC4: $R_2$ OPEN & LOW & & LowPD \\ \hline
|
||||||
|
\hline
|
||||||
|
\end{tabular}
|
||||||
|
\label{tbl:pdfmea}
|
||||||
|
\end{table}
|
||||||
|
|
||||||
|
By collecting the symptoms in table~ref{tbl:pdfmea} we can create a derived
|
||||||
|
component $PD$ to represent the failure mode behaviour
|
||||||
|
of a potential divider.
|
||||||
|
|
||||||
|
Thus for single failure modes, a potential divider can fail
|
||||||
|
$fm(PD) = \{PDHigh,PDLow\}$.
|
||||||
|
|
||||||
|
|
||||||
|
The potential divider is used to program the gain of IC1.
|
||||||
|
IC1 and PD1 provide the function of buffering
|
||||||
|
/amplifying the signal $+V1$.
|
||||||
|
We can treat IC1 and PD1 as a functional group.
|
||||||
|
|
||||||
|
|
||||||
|
\subsection{Functional Group: Amplifier}
|
||||||
|
|
||||||
|
Let use now consider the op-amp. According to
|
||||||
|
FMD-91~\cite{fmd91}[3-116] an op amp may have the following failure modes:
|
||||||
|
latchup(12.5\%), latchdown(6\%), nooperation(31.3\%), lowslewrate(50\%).
|
||||||
|
|
||||||
|
|
||||||
|
$$ fm(OPAMP) = \{L\_{up}, L\_{dn}, Noop, L\_slew \} $$
|
||||||
|
|
||||||
|
|
||||||
|
By bringing the $PD$ derived component and the $OPAMP$ into
|
||||||
|
a functional group we can analyse its failure mode behaviour.
|
||||||
|
|
||||||
|
|
||||||
|
\begin{table}[ht]
|
||||||
|
\caption{Non Inverting Amplifier: Failure Mode Effects Analysis: Single Faults} % title of Table
|
||||||
|
\centering % used for centering table
|
||||||
|
\begin{tabular}{||l|c|c|l|l||}
|
||||||
|
\hline \hline
|
||||||
|
\textbf{Test} & \textbf{Amplifier} & \textbf{ } & \textbf{General} \\
|
||||||
|
\textbf{Case} & \textbf{Effect} & \textbf{ } & \textbf{Symtom Description} \\
|
||||||
|
% R & wire & res + & res - & description
|
||||||
|
\hline
|
||||||
|
\hline
|
||||||
|
TC1: $OPAMP$ LatchUP & Output High & & AMPHigh \\
|
||||||
|
TC2: $OPAMP$ LatchDown & Output Low : Low gain& & AMPLow \\ \hline
|
||||||
|
TC3: $OPAMP$ No Operation & Output Low & & AMPLow \\
|
||||||
|
TC4: $OPAMP$ Low Slew & Low pass filtering & & LowPass \\ \hline
|
||||||
|
TC5: $PD$ LowPD & Output High & & AMPHigh \\ \hline
|
||||||
|
TC6: $PD$ HighPD & Output Low : Low Gain& & AMPLow \\ \hline
|
||||||
|
%TC7: $R_2$ OPEN & LOW & & LowPD \\ \hline
|
||||||
|
\hline
|
||||||
|
\end{tabular}
|
||||||
|
\label{ampfmea}
|
||||||
|
\end{table}
|
||||||
|
|
||||||
|
|
||||||
|
Collecting the symptoms we can see that this amplifier fails
|
||||||
|
in 3 ways $\{ AMPHigh, AMPLow, LowPass \}$.
|
||||||
|
We can now create a derived component, $NONINVAMP$, to represent it.
|
||||||
|
|
||||||
|
|
||||||
|
$$ fm(NI\_AMP) = \{ AMPHigh, AMPLow, LowPass \} $$
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\subsection{The second Stage of the amplifier}
|
||||||
|
|
||||||
|
The second stage of this amplifier, following the signal path, is the amplifier
|
||||||
|
consisting of $R3,R4,IC2$.
|
||||||
|
|
||||||
|
This is in exactly the same configuration as the first amplifier.
|
||||||
|
Its failure mode are therefore the same.
|
||||||
|
|
||||||
|
\pagebreak[4]
|
||||||
|
\subsection{Modelling the circuit}
|
||||||
|
|
||||||
|
For the final stage of this we can create a functional group consisting of
|
||||||
|
two derived components of the type $NI\_AMP$.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\begin{table}[ht]
|
||||||
|
\caption{Difference Amplifier $DiffAMP$ : Failure Mode Effects Analysis: Single Faults} % title of Table
|
||||||
|
\centering % used for centering table
|
||||||
|
\begin{tabular}{||l|c|c|l|l||}
|
||||||
|
\hline \hline
|
||||||
|
\textbf{Test} & \textbf{Dual Amplifier} & \textbf{ } & \textbf{General} \\
|
||||||
|
\textbf{Case} & \textbf{Effect} & \textbf{ } & \textbf{Symtom Description} \\
|
||||||
|
% R & wire & res + & res - & description
|
||||||
|
\hline
|
||||||
|
\hline
|
||||||
|
TC1: $NI\_AMP1$ AMPHigh & opamp 2 driven high & & DiffAMPLow \\
|
||||||
|
TC2: $NI\_AMP1$ AMPLow & opamp 2 fdriven low & & DiffAMPHIGH \\
|
||||||
|
TC3: $NI\_AMP1$ LowPass & opamp 2 driven with lag & & DiffAMP\_LP \\ \hline
|
||||||
|
TC4: $NI\_AMP2$ AMPHigh & dual amplifier high & & DiffAMPHIGH \\
|
||||||
|
TC5: $NI\_AMP2$ AMPLow & dual amplifier low & & DiffAMPLow \\
|
||||||
|
TC6: $NI\_AMP2$ LowPass & dual amplifier lag/lowpass & & DiffAMP\_LP \\ \hline
|
||||||
|
%TC7: $R_2$ OPEN & LOW & & LowPD \\ \hline
|
||||||
|
\hline
|
||||||
|
\end{tabular}
|
||||||
|
\label{ampfmea}
|
||||||
|
\end{table}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Collecting the symptoms, we can determine the failure modes for this circuit, $\{DiffAMPLow, DiffAMPHIGH, DiffAMP\_LP\}$.
|
||||||
|
|
||||||
|
|
||||||
|
We now create a derived component to represent the circuit in figure~\ref{fig:circuit1}.
|
||||||
|
|
||||||
|
$$ fm (DiffAMP) = \{DiffAMPLow, DiffAMPHIGH, DiffAMP\_LP\} $$
|
||||||
|
|
||||||
|
|
||||||
|
Its interesting here to note that we can draw a directed graph
|
||||||
|
of the failure modes and derived components here.
|
||||||
|
By doing this we can trace any top level fault back to
|
||||||
|
a component failure mode that could have caused it.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\clearpage
|
\clearpage
|
||||||
\section{Op-Amp circuit 2}
|
\section{Op-Amp circuit 2}
|
||||||
|
Loading…
Reference in New Issue
Block a user