forgot to commit last nighe...
This commit is contained in:
parent
452b853952
commit
1798a52306
@ -1,6 +1,6 @@
|
|||||||
|
|
||||||
|
|
||||||
PNG_DIA = circuit1_dag.png mvampcircuit.png pd.png invamp.png shared_component.png tree_abstraction_levels.png three_tree.png
|
PNG_DIA = circuit1_dag.png mvampcircuit.png pd.png invamp.png shared_component.png tree_abstraction_levels.png three_tree.png blockdiagramcircuit2.png circuit2h.png
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
BIN
opamp_circuits_C_GARRETT/blockdiagramcircuit2.dia
Normal file
BIN
opamp_circuits_C_GARRETT/blockdiagramcircuit2.dia
Normal file
Binary file not shown.
Binary file not shown.
Before Width: | Height: | Size: 175 KiB After Width: | Height: | Size: 188 KiB |
BIN
opamp_circuits_C_GARRETT/circuit2h.dia
Normal file
BIN
opamp_circuits_C_GARRETT/circuit2h.dia
Normal file
Binary file not shown.
@ -250,35 +250,36 @@ We begin by identifying functional groups from the components in the circuit.
|
|||||||
|
|
||||||
|
|
||||||
\subsection{Functional Group: Potential Divider}
|
\subsection{Functional Group: Potential Divider}
|
||||||
|
Here we can re-use the potential divider from section~\ref{potdivfmmd}.
|
||||||
|
|
||||||
R1 and R2 perform as a potential divider.
|
%R1 and R2 perform as a potential divider.
|
||||||
Resistors can fail OPEN and SHORT (according to GAS burner standard EN298 Appendix A).
|
%Resistors can fail OPEN and SHORT (according to GAS burner standard EN298 Appendix A).
|
||||||
$$ fm(R) = \{ OPEN, SHORT \}$$
|
%$$ fm(R) = \{ OPEN, SHORT \}$$
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\begin{table}[ht]
|
% \begin{table}[ht]
|
||||||
\caption{Potential Divider $PD$: Failure Mode Effects Analysis: Single Faults} % title of Table
|
% \caption{Potential Divider $PD$: Failure Mode Effects Analysis: Single Faults} % title of Table
|
||||||
\centering % used for centering table
|
% \centering % used for centering table
|
||||||
\begin{tabular}{||l|c|c|l|l||}
|
% \begin{tabular}{||l|c|c|l|l||}
|
||||||
\hline \hline
|
% \hline \hline
|
||||||
\textbf{Test} & \textbf{Pot.Div} & \textbf{ } & \textbf{General} \\
|
% \textbf{Test} & \textbf{Pot.Div} & \textbf{ } & \textbf{General} \\
|
||||||
\textbf{Case} & \textbf{Effect} & \textbf{ } & \textbf{Symtom Description} \\
|
% \textbf{Case} & \textbf{Effect} & \textbf{ } & \textbf{Symtom Description} \\
|
||||||
% R & wire & res + & res - & description
|
% % R & wire & res + & res - & description
|
||||||
\hline
|
% \hline
|
||||||
\hline
|
% \hline
|
||||||
TC1: $R_1$ SHORT & LOW & & LowPD \\
|
% TC1: $R_1$ SHORT & LOW & & LowPD \\
|
||||||
TC2: $R_1$ OPEN & HIGH & & HighPD \\ \hline
|
% TC2: $R_1$ OPEN & HIGH & & HighPD \\ \hline
|
||||||
TC3: $R_2$ SHORT & HIGH & & HighPD \\
|
% TC3: $R_2$ SHORT & HIGH & & HighPD \\
|
||||||
TC4: $R_2$ OPEN & LOW & & LowPD \\ \hline
|
% TC4: $R_2$ OPEN & LOW & & LowPD \\ \hline
|
||||||
\hline
|
% \hline
|
||||||
\end{tabular}
|
% \end{tabular}
|
||||||
\label{tbl:pdfmea}
|
% \label{tbl:pdfmea}
|
||||||
\end{table}
|
% \end{table}
|
||||||
|
%
|
||||||
By collecting the symptoms in table~\ref{tbl:pdfmea} we can create a derived
|
% By collecting the symptoms in table~\ref{tbl:pdfmea} we can create a derived
|
||||||
component $PD$ to represent the failure mode behaviour
|
% component $PD$ to represent the failure mode behaviour
|
||||||
of a potential divider.
|
% of a potential divider.
|
||||||
|
|
||||||
Thus for single failure modes, a potential divider can fail
|
Thus for single failure modes, a potential divider can fail
|
||||||
with $fm(PD) = \{PDHigh,PDLow\}$.
|
with $fm(PD) = \{PDHigh,PDLow\}$.
|
||||||
@ -406,7 +407,7 @@ two derived components of the type $NI\_AMP$ and $SEC\_AMP$.
|
|||||||
\begin{tabular}{||l|c|c|l|l||}
|
\begin{tabular}{||l|c|c|l|l||}
|
||||||
\hline \hline
|
\hline \hline
|
||||||
\textbf{Test} & \textbf{Dual Amplifier} & \textbf{ } & \textbf{General} \\
|
\textbf{Test} & \textbf{Dual Amplifier} & \textbf{ } & \textbf{General} \\
|
||||||
\textbf{Case} & \textbf{Effect} & \textbf{ } & \textbf{Symtom Description} \\
|
\textbf{Case} & \textbf{Effect} & \textbf{ } & \textbf{Symptom Description} \\
|
||||||
% R & wire & res + & res - & description
|
% R & wire & res + & res - & description
|
||||||
\hline
|
\hline
|
||||||
\hline
|
\hline
|
||||||
@ -468,6 +469,164 @@ wihen it becomes a V2 follower).
|
|||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
The circuit in figure~\ref{fig:circuit2} shows a five pole low pass filter.
|
||||||
|
Starting at the input, we have a first order low pass filter buffered by an op-amp,
|
||||||
|
the output of this is passed to a Sallen~Key~\cite{aoe}[p.267] second order lowpass filter.
|
||||||
|
The output of this is passed into another Sallen~Key filter (which although it may have different values
|
||||||
|
for its resistors/capacitors and thus a different frequency response) is idential from a failure mode perspective.
|
||||||
|
Thus we can analyse the first Sallen~Key low pass filter and re-use the results.
|
||||||
|
|
||||||
|
\paragraph{First Order Low Pass Filter.}
|
||||||
|
We begin with the first order low pass filter formed by $R10$ and $C10$.
|
||||||
|
%
|
||||||
|
This configuration (or {\fg}) is very commonly
|
||||||
|
used in electronics to remove unwanted high frequencies/interference
|
||||||
|
form a signal; Here it is being used as a first stage of
|
||||||
|
a more sophisticated low pass filter.
|
||||||
|
%
|
||||||
|
R10 and C10 act as a potential divider, with the crucial difference between a purely resistive potential divider being
|
||||||
|
that the impedance of the capacitor is lower for higher frequencies.
|
||||||
|
Thus higher frquencies are attenuated at the point that we
|
||||||
|
read its output signal.
|
||||||
|
However, from a failure mode perspective we can analyse it in a very similar way
|
||||||
|
to a potential divider.
|
||||||
|
Capacitors generally fail OPEN but some types fail OPEN and SHORT.
|
||||||
|
We will consider the latter type for this analysis.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\begin{table}[h+]
|
||||||
|
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||||
|
\textbf{Failure Scenario} & & \textbf{First Order} & & \textbf{Symptom} \\
|
||||||
|
& & \textbf{Low Pass Filter} & & \\
|
||||||
|
\hline
|
||||||
|
FS1: R10 SHORT & & $No Filtering$ & & $LPnofilter$ \\ \hline
|
||||||
|
FS2: R10 OPEN & & $No Signal$ & & $LPnosignal$ \\ \hline
|
||||||
|
FS3: C10 SHORT & & $No Signal$ & & $LPnosignal$ \\ \hline
|
||||||
|
FS4: C10 OPEN & & $No Filtering$ & & $LPnofilter$ \\ \hline
|
||||||
|
\hline
|
||||||
|
\end{tabular}
|
||||||
|
\end{table}
|
||||||
|
|
||||||
|
|
||||||
|
We can collect the symptoms $\{ LPnofilter,LPnosignal \}$ and create a derived component
|
||||||
|
called $FirstOrderLP$. Applying the $fm$ function yields $$ fm(FirstOrderLP) = \{ LPnofilter,LPnosignal \}.$$
|
||||||
|
|
||||||
|
\paragraph{Addition of Buffer Amplifier: first stage.}
|
||||||
|
|
||||||
|
The opamp IC1 is being used simply as a buffer. By placing it between the next stages
|
||||||
|
on the signal path we remove the possibility of unwanted signal feedback.
|
||||||
|
The buffer is one of the simplest op-amp configurations.
|
||||||
|
It has no other components, and so we can now form a {\fg}
|
||||||
|
from the $FirstOrderLP$ and the OPAMP component.
|
||||||
|
|
||||||
|
\begin{table}[ht]
|
||||||
|
\caption{First Stage LP1: Failure Mode Effects Analysis: Single Faults} % title of Table
|
||||||
|
\centering % used for centering table
|
||||||
|
\begin{tabular}{||l|c|c|l|l||}
|
||||||
|
\hline \hline
|
||||||
|
\textbf{Test} & \textbf{Amplifier} & \textbf{ } & \textbf{General} \\
|
||||||
|
\textbf{Case} & \textbf{Effect} & \textbf{ } & \textbf{Symptom Description} \\
|
||||||
|
% R & wire & res + & res - & description
|
||||||
|
\hline
|
||||||
|
\hline
|
||||||
|
TC1: $OPAMP$ LatchUP & Output High & & LP1High \\
|
||||||
|
TC2: $OPAMP$ LatchDown & Output Low & & LP1Low \\ \hline
|
||||||
|
TC3: $OPAMP$ No Operation & Output Low & & LP1Low \\
|
||||||
|
TC4: $OPAMP$ Low Slew & Unwanted Low pass filtering & & LP1ExtraLowPass \\ \hline
|
||||||
|
TC5: $LPnofilter $ & No low pass filtering & & LP1NoLowPass \\ \hline
|
||||||
|
TC6: $LPnosignal $ & No input signal & & LP1low \\
|
||||||
|
\hline
|
||||||
|
|
||||||
|
\hline
|
||||||
|
\end{tabular}
|
||||||
|
\label{tbl:firststage}
|
||||||
|
\end{table}
|
||||||
|
|
||||||
|
From the table~\ref{tbl:firststage} we can see three symptoms of failure of
|
||||||
|
the first stage of this circuit (i.e. R10,C10,IC1).
|
||||||
|
We can create a derived component for it, lets call it $LP1$.
|
||||||
|
|
||||||
|
$$ fm(LP1) = \{ LP1High, LP1Low, LP1ExtraLowPass, LP1NoLowPass \} $$
|
||||||
|
|
||||||
|
|
||||||
|
\paragraph{Second order Sallen Key Low Pass Filter.}
|
||||||
|
The next two filters in the signal path are R1,R2,C2,C1,IC2 and R3,R4,C4,C3,IC3.
|
||||||
|
From a failure mode perspective these are identical.
|
||||||
|
We can analyse one and re-use the results for the second.
|
||||||
|
|
||||||
|
\begin{table}[ht]
|
||||||
|
\caption{Sallen Key Low Pass Filter SKLP: Failure Mode Effects Analysis: Single Faults} % title of Table
|
||||||
|
\centering % used for centering table
|
||||||
|
\begin{tabular}{||l|c|c|l|l||}
|
||||||
|
\hline \hline
|
||||||
|
\textbf{Test} & \textbf{Amplifier} & \textbf{ } & \textbf{General} \\
|
||||||
|
\textbf{Case} & \textbf{Effect} & \textbf{ } & \textbf{Symptom Description} \\
|
||||||
|
% R & wire & res + & res - & description
|
||||||
|
\hline
|
||||||
|
\hline
|
||||||
|
TC1: $OPAMP$ LatchUP & Output High & & SKLPHigh \\
|
||||||
|
TC2: $OPAMP$ LatchDown & Output Low & & SKLPLow \\ \hline
|
||||||
|
TC3: $OPAMP$ No Operation & Output Low & & SKLPLow \\
|
||||||
|
TC4: $OPAMP$ Low Slew & Unwanted Low pass filtering & & SKLPIncorrect \\ \hline
|
||||||
|
TC5: $R1 OPEN$ & No input signal & & SKLPIncorrect \\ \hline
|
||||||
|
TC6: $R1 SHORT$ & incorrect low pass filtering & & SKLPIncorrect \\
|
||||||
|
TC7: $R2 OPEN$ & No input signal & & SKLPnosignal \\ \hline
|
||||||
|
TC8: $R2 SHORT$ & incorrect low pass filtering & & SKLPIncorrect \\
|
||||||
|
TC9: $C1 OPEN$ & reduced/incorrect low pass filtering & & SKLPIncorrect\\ \hline
|
||||||
|
TC10: $C1 SHORT$ & reduced/incorrect low pass filtering & & SKLPIncorrect \\
|
||||||
|
TC11: $C2 OPEN$ & reduced/incorrect low pass filtering & & SKLPIncorrect \\ \hline
|
||||||
|
TC12: $C2 SHORT$ & No input signal, low signal & & SKLPnosignal \\
|
||||||
|
\hline
|
||||||
|
\hline
|
||||||
|
\end{tabular}
|
||||||
|
\label{tbl:firststage}
|
||||||
|
\end{table}
|
||||||
|
|
||||||
|
We now can create a derived component to represent the Sallen Key low pass filter, which we can call $SKLP$.
|
||||||
|
|
||||||
|
|
||||||
|
$$ fm ( SKLP ) = \{ SKLPHigh, SKLPLow, SKLPIncorrect, SKLPnosignal \} $$
|
||||||
|
|
||||||
|
|
||||||
|
\paragraph{A failure mode model of Op-Amp Circuit 2.}
|
||||||
|
|
||||||
|
We now have {\dcs} representing the three stages of this filter.
|
||||||
|
We represent this as a block diagram to represent the signal flow, in figure~\ref{fig:blockdiagramcircuit2}.
|
||||||
|
|
||||||
|
|
||||||
|
\begin{figure}[h]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=400pt,keepaspectratio=true]{./blockdiagramcircuit2.png}
|
||||||
|
% blockdiagramcircuit2.png: 689x83 pixel, 72dpi, 24.31x2.93 cm, bb=0 0 689 83
|
||||||
|
\caption{Signal Flow though five pole low pass filter}
|
||||||
|
\label{fig:blockdiagramcircuit2}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
As the signal has to pass though each block/stage
|
||||||
|
in order to be `five~pole' filtered, we need to bring these three blocks together into a {\fg}
|
||||||
|
in order to get a failure mode model for the whole circuit.
|
||||||
|
|
||||||
|
|
||||||
|
We can represent the desired FMMD hierarchy in figure~\ref{fig:circuit2h}.
|
||||||
|
|
||||||
|
|
||||||
|
\begin{figure}[h]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=300pt]{./circuit2h.png}
|
||||||
|
% circuit2h.png: 676x603 pixel, 72dpi, 23.85x21.27 cm, bb=0 0 676 603
|
||||||
|
\caption{FMMD Hierarchy for five pole Low Pass Filter}
|
||||||
|
\label{fig:circuit2h}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
So out final {\fg} will consist of the derived components
|
||||||
|
$\{ LP1, SKLP_1, SKLP_2 \}$.
|
||||||
|
|
||||||
\clearpage
|
\clearpage
|
||||||
\section{Op-Amp circuit 3}
|
\section{Op-Amp circuit 3}
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user