worked on fzd and images
BIN
fzd/abcgraph.jpg
Normal file
After Width: | Height: | Size: 13 KiB |
400
fzd/fzd.tex
@ -1,67 +1,47 @@
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
%\documentclass[reviewversion,strict]{twocolconf}
|
||||
|
||||
|
||||
%\conferencename{EULER2005}
|
||||
|
||||
|
||||
% \begin{document}
|
||||
|
||||
|
||||
% \papertitle { Fast Zone Discrimination \thanks{Version 1.0 2004JUL31
|
||||
% {\tt twocolconf} class.}}
|
||||
% {
|
||||
% R P Clark\thanks{footnote}\\
|
||||
% \em Written as a by product of constraint editor production \\
|
||||
% \email{r.clark@energytechnologycontrol.com} \\
|
||||
%\and
|
||||
%Second author \\
|
||||
%\em Affiliation \\
|
||||
%\em Affiliation \\
|
||||
%\email{x@any.tld}\\
|
||||
%\and
|
||||
%Third author \\
|
||||
%\em Affiliation \\
|
||||
%\em Affiliation \\
|
||||
%\email{y@any.tld}\\
|
||||
%}
|
||||
|
||||
%\headertitle{Enables an alternate running header, if applicable to current layout}
|
||||
|
||||
|
||||
% \begin{abstract}
|
||||
|
||||
% This paper concentrates on an algorithmic method for determining the
|
||||
% available zones in an Euler Diagram. It introduces the concepts of pure
|
||||
% and enclosing relations between contours and chains of pure intersections.
|
||||
% By representing
|
||||
% spider/constraint diagrams as directed graphs, this then develops rules and
|
||||
% a recursive strategy
|
||||
% determining the available zones, and by deduction, eliminating examining contour combinations that
|
||||
% will not contain available zones.
|
||||
% \end{abstract}
|
||||
|
||||
|
||||
|
||||
\section{Introduction : Euler Diagram and Zones Available for use}
|
||||
|
||||
Euler diagrams consist of closed curves in the plane which are used to represent sets.
|
||||
The spaitial ralationship between the curves defines the set theoretic relationships.
|
||||
\begin{itemize}
|
||||
\item Intersection - if the curves overlap
|
||||
\item Sub-set - if a curve is enclosed by another
|
||||
\item disjoint - if the curves are separate
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Defining Available Zones}
|
||||
|
||||
An Euler diagram as opposed to a Venn diagram defines a universe of discourse.
|
||||
In a Venn diagram all possible zones are visible and available
|
||||
for placing of existential objects.% \cite{wiki}.
|
||||
\par
|
||||
An Euler diagram, by not having to make all possible zones available
|
||||
restricts this and can place conjunctive constraints on the number combinations of
|
||||
attributes that the diagram respesents.
|
||||
\par
|
||||
When performing logical reasoning on euler diagrams with added existential objects,
|
||||
it is important to note which available zones do not have objects associated with them.
|
||||
These represent cases where the user has left them undefined, or considers them to
|
||||
A zone is defined as a region of the plane where a set of curves will enclose it
|
||||
and another set is disjoint from it.
|
||||
A Venn diagram is an Euler diagram where all possible zones are present.
|
||||
Thus if we have a Venn diagram with $N$ countours it will have $2^N$
|
||||
zones.
|
||||
%
|
||||
An Euler diagram, does not have to make all possible zones available.
|
||||
Thus we can make certain combinations of contours unavailable
|
||||
by drawing the diagrams. Or in other words we can deliberately restrict
|
||||
not only combinations of contours but also the number of available zones.
|
||||
%
|
||||
In Constraint Diagram and PLD's Euler diagrams are used
|
||||
and objects are placed upon the available zones.
|
||||
%
|
||||
When performing logical reasoning on euler diagrams,
|
||||
it is important to note which available zones do not have objects associated with them in order to flag the unhandled cases in the diagram.
|
||||
These could represent cases where the user has left them undefined, or considers them to
|
||||
be a general case. Either way they need to be flagged as an ommission error or
|
||||
collected. In order to do this a method of finding all available zones in an euler diagram is necessary.
|
||||
collected. In order to do this a method of finding all available zones is necessary.
|
||||
%
|
||||
Also note that in a complicated diagram, a zone may, at first glance, appear available, but could be covered-up or obscured by
|
||||
an enclosing contour.
|
||||
|
||||
%The sizes or shapes of the curves are not important, the significance of the diagram is in how they overlap.
|
||||
%The spatial relationships between the regions bounded by each curve (overlap, containment or neither) corresponds to set-theoretic relationships (intersection, subset and disjointness).
|
||||
%
|
||||
%Each Euler curve divides the plane into two regions or "zones": the interior, which symbolically represents the elements of the set, and the exterior, which represents all elements which are not members of the set.
|
||||
%Curves which do not intersect represent disjoint sets. Two curves which intersect represent sets that have common elements; the zone inside both curves represents the set of elements common to both sets (the intersection of the sets). A curve which is contained completely within another represents a subset of it.
|
||||
%
|
||||
%Venn diagrams are a more restrictive form of Euler diagrams.
|
||||
%A Venn diagram must contain all the possible zones of overlap between its curves, representing all combinations of inclusion/exclusion of its constituent sets, but in an Euler diagram some zones might be missing.
|
||||
%Therefore there is only one Venn diagram representing the relationships between n sets, with 2n zones, but there may be many Euler diagrams.
|
||||
%(An example is given below in the History section; in the top-right illustration the O and I diagrams are merely rotated; Venn stated that this difficulty in part led him to develop his diagrams).
|
||||
|
||||
\par
|
||||
|
||||
@ -75,21 +55,38 @@ For a zone to be available for use it must
|
||||
|
||||
\par
|
||||
|
||||
|
||||
Each zone can be defined by the contours that intersect to define it and the remaining
|
||||
contours in the diagram.
|
||||
Thus for a diagram $ D $ consisting of a set of zones $ Z $ where the zones in the diagram
|
||||
$ Z_{n} $
|
||||
are defined as a sets of intersection contours $ A_{n} $, and exclusion sets
|
||||
$ B_{n} $.
|
||||
|
||||
\subsubsection{Testing for Obscuration}
|
||||
|
||||
Obscuration is tested for by being able to subtract one shape from another
|
||||
with a resultant shape only containg the remainder of the subtraction.
|
||||
This is as defined in the Java Area classes \cite{javaarea} .
|
||||
A zone obscured by other contours is one that forms the area of intersection
|
||||
\subsubsection{Testing a Zone for Existance}
|
||||
|
||||
The Java Area, Shape and Polygon classes, provide functions to
|
||||
intersect, subtract and `exclusive or' Areas on the plane. They are thus
|
||||
very useful in testing objects drawn under a Java environment.
|
||||
%
|
||||
To determine if a zone exists we can apply the intersection
|
||||
functions to all the $A_{N}$ contours. If any Area remains
|
||||
the zone exists. To check that the zone is available, we must
|
||||
also ensure that it is not covered over by a contour in the $ B_{N}$ set.
|
||||
|
||||
\subsubsection{Testing for Obscuration}
|
||||
Firstly apply intersection to all the $A_{n}$ contours in the Zone.
|
||||
We are then left with the area of intersection only.
|
||||
%
|
||||
From this we can subtract all the areas from the $B_{n}$ contours.
|
||||
If the zone was obscured, or covered up the Area object will register that it has no area on the plane.
|
||||
%
|
||||
In other words, a zone obscured by other contours is one that forms the area of intersection
|
||||
of the set $ A_{n} $ and then having all the areas from set $ B_{n} $ subtracted from it
|
||||
no surface area left.
|
||||
|
||||
Firstly let us define the meaning of availability in concrete area terms.
|
||||
%
|
||||
Firstly let us define the meaning of availability in concrete area termsi by means of an example diagram.
|
||||
In figure \ref{fig:ex1}, there is an Euler diagram with the following zones available.
|
||||
|
||||
|
||||
@ -119,26 +116,40 @@ In figure \ref{fig:ex1}, there is an Euler diagram with the following zones avai
|
||||
|
||||
Note $B \cap C$ and $ C $ are not available in this diagram because it is impossible to place objects on them.
|
||||
Objects could be placed on $ B \cap C \cap D $ and $ B \cap D $ however.
|
||||
|
||||
|
||||
\begin{figure}
|
||||
\vskip 4.2cm
|
||||
\special{psfile=fzd/exampleareasubtraction1.eps hoffset=0 voffset=-10 hscale=60 vscale=60}\caption[Area Intersection]{
|
||||
Simple Euler Diagram
|
||||
\label{fig:ex1}}
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=200pt,bb=0 0 315 217,keepaspectratio=true]{fzd/exampleareasubtraction1.jpg}
|
||||
% exampleareasubtraction1.jpg: 438x301 pixel, 100dpi, 11.13x7.65 cm, bb=0 0 315 217
|
||||
\caption{Simple Euler Diagram}
|
||||
\label{fig:ex1}
|
||||
\end{figure}
|
||||
|
||||
%
|
||||
% \begin{figure}
|
||||
% \vskip 4.2cm
|
||||
% \special{psfile=fzd/exampleareasubtraction1.eps hoffset=0 voffset=-10 hscale=60 vscale=60}\caption[Area Intersection]{
|
||||
% Simple Euler Diagram
|
||||
% \label{fig:ex1}}
|
||||
% \end{figure}
|
||||
|
||||
Examining the intersection $ A \cap B $ the corresponding Area is shown in red
|
||||
in figure \ref{fig:ex2}.
|
||||
|
||||
|
||||
\begin{figure}
|
||||
\vskip 4.2cm
|
||||
\special{psfile=fzd/exampleareasubtraction2.eps hoffset=0 voffset=-10 hscale=60 vscale=60}\caption[Area Intersection]{
|
||||
Area representation of intersection between set A and B
|
||||
\label{fig:ex2}}
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=200pt,bb=0 0 315 217,keepaspectratio=true]{fzd/exampleareasubtraction2.jpg}
|
||||
% exampleareasubtraction2.jpg: 438x301 pixel, 100dpi, 11.13x7.65 cm, bb=0 0 315 217
|
||||
\caption{Area representation of intersection between A and B}
|
||||
\label{fig:ex2}
|
||||
\end{figure}
|
||||
|
||||
% \begin{figure}
|
||||
% \vskip 4.2cm
|
||||
% \special{psfile=fzd/exampleareasubtraction2.eps hoffset=0 voffset=-10 hscale=60 vscale=60}\caption[Area Intersection]{
|
||||
% Area representation of intersection between set A and B
|
||||
% \label{fig:ex2}}
|
||||
% \end{figure}
|
||||
|
||||
The area to be subtracted is shown in blue in figure \ref{fig:ex3}.
|
||||
Note that here the intersection exists
|
||||
and is not obscured by the areas made up from the other contours.
|
||||
@ -148,13 +159,20 @@ In figure \ref{fig:ex1}, there is an Euler diagram with the following zones avai
|
||||
areas comprised of the other contours $ C \cup D $
|
||||
(in fact in this diagram only $ D $ is required to prove obscuration
|
||||
because $ C \subset D $ ).
|
||||
|
||||
\begin{figure}
|
||||
\vskip 4cm
|
||||
\special{psfile=fzd/exampleareasubtraction3.eps hoffset=0 voffset=-10 hscale=60 vscale=60}\caption[Area Intersection]{
|
||||
Area representation of exclusion Zone to be subtracted
|
||||
\label{fig:ex3}}
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=200pt,bb=0 0 315 217,keepaspectratio=true]{fzd/exampleareasubtraction3.jpg}
|
||||
% exampleareasubtraction3.jpg: 438x301 pixel, 100dpi, 11.13x7.65 cm, bb=0 0 315 217
|
||||
\caption{Area representation of exclusion zone to be subtracted}
|
||||
\label{fig:ex3}
|
||||
\end{figure}
|
||||
%
|
||||
% \begin{figure}
|
||||
% \vskip 4cm
|
||||
% \special{psfile=fzd/exampleareasubtraction3.eps hoffset=0 voffset=-10 hscale=60 vscale=60}\caption[Area Intersection]{
|
||||
% Area representation of exclusion Zone to be subtracted
|
||||
% \label{fig:ex3}}
|
||||
% \end{figure}
|
||||
|
||||
%\begin{picture}(200,200)(10,10)
|
||||
%\put(20,0){\circle{20}}
|
||||
@ -335,13 +353,20 @@ is small in comparison with $2^{N}$ the algorithm becomes far more efficient.
|
||||
Examples of complexity savings are shown in section \ref{complexity}.
|
||||
|
||||
|
||||
|
||||
\begin{figure}
|
||||
\vskip 6cm
|
||||
\special{psfile=fzd/piee.ps hoffset=0 voffset=-10 hscale=40 vscale=40}\caption[Pure Intersection Zone Capture Method]{
|
||||
A Pure Intersection and an Enclosure
|
||||
\label{fig:piee}}
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=200pt,bb=0 0 642 482,keepaspectratio=true]{fzd/piee.jpg}
|
||||
% piee.jpg: 891x669 pixel, 100dpi, 22.63x16.99 cm, bb=0 0 642 482
|
||||
\caption{A Pure Intersection and an Enclosure}
|
||||
\label{fig:piee}
|
||||
\end{figure}
|
||||
|
||||
% \begin{figure}
|
||||
% \vskip 6cm
|
||||
% \special{psfile=fzd/piee.ps hoffset=0 voffset=-10 hscale=40 vscale=40}\caption[Pure Intersection Zone Capture Method]{
|
||||
% A Pure Intersection and an Enclosure
|
||||
% \label{fig:piee}}
|
||||
% \end{figure}
|
||||
\subsection { Relationships between Contours }
|
||||
|
||||
The algorithm for fast finding of available zones depends upon defining three new relationships between contours.
|
||||
@ -362,12 +387,20 @@ A countour is said to be enclosed if it fits completely within another contour.
|
||||
|
||||
\subsubsection { Pure Intersection Chains }
|
||||
|
||||
\begin{figure}
|
||||
\vskip 6cm
|
||||
\special{psfile=fzd/pic.ps hoffset=0 voffset=0 hscale=40 vscale=40}\caption[Pure Intersection Zone Capture Method]{
|
||||
Pure Intersection Zone Chain
|
||||
\label{fig:pic}}
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=200pt,bb=0 0 642 482]{fzd/pic.jpg}
|
||||
% pic.jpg: 891x669 pixel, 100dpi, 22.63x16.99 cm, bb=0 0 642 482
|
||||
\caption{Pure Intersection Zone Chain}
|
||||
\label{fig:pic}
|
||||
\end{figure}
|
||||
%
|
||||
% \begin{figure}
|
||||
% \vskip 6cm
|
||||
% \special{psfile=fzd/pic.ps hoffset=0 voffset=0 hscale=40 vscale=40}\caption[Pure Intersection Zone Capture Method]{
|
||||
% Pure Intersection Zone Chain
|
||||
% \label{fig:pic}}
|
||||
% \end{figure}
|
||||
|
||||
Pairs of contours may belong to the same pure intersection chain.
|
||||
Pure Intersection chains are a chain of contours that can all
|
||||
@ -427,14 +460,21 @@ This forms a list of relationship pairs from the cross product of all the contou
|
||||
\endequation
|
||||
|
||||
|
||||
|
||||
\begin{figure}
|
||||
\vskip 6cm
|
||||
\special{psfile=fzd/pice.ps hoffset=0 voffset=0 hscale=40 vscale=40}\caption[Pure Intersection Zone Capture Method]{
|
||||
Pure Intersection Chain with an implicit Enclosure
|
||||
\label{fig:picwaie}}
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=200pt,bb=0 0 452 290,keepaspectratio=true]{fzd/pice.jpg}
|
||||
% pice.jpg: 628x403 pixel, 100dpi, 15.95x10.24 cm, bb=0 0 452 290
|
||||
\caption{Pure Intersection Chain with implicit enclosure}
|
||||
\label{fig:picwaie}
|
||||
\end{figure}
|
||||
|
||||
% \begin{figure}
|
||||
% \vskip 6cm
|
||||
% \special{psfile=fzd/pice.ps hoffset=0 voffset=0 hscale=40 vscale=40}\caption[Pure Intersection Zone Capture Method]{
|
||||
% Pure Intersection Chain with an implicit Enclosure
|
||||
% \label{fig:picwaie}}
|
||||
% \end{figure}
|
||||
|
||||
\subsubsection {Determining Enclosure }
|
||||
|
||||
When a contour completely encloses another contour, it has an enclosing relationship.
|
||||
@ -470,21 +510,37 @@ intersections and red for enclosures for the examples that follow.
|
||||
|
||||
|
||||
Figure \ref{fig:pig1} Shows a CDG for the diagram in figure \ref{fig:pic}. Note that traversing through this graph reveals all the intersections, and that there are no loops in the traversal, meaning that no multiple intersections exist.
|
||||
\begin{figure}
|
||||
\vskip 6cm
|
||||
\special{psfile=fzd/pig1.ps hoffset=0 voffset=0 hscale=40 vscale=40}\caption[Pure Intersection Zone Capture Method]{
|
||||
Coloured Directed Graph of Pure Intersection Chain
|
||||
\label{fig:pig1}}
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=200pt,bb=0 0 361 163]{fzd/pig1.jpg}
|
||||
% pig1.jpg: 502x227 pixel, 100dpi, 12.75x5.77 cm, bb=0 0 361 163
|
||||
\caption{Coloured Directed Graph of Pure Intersection Chain}
|
||||
\label{fig:pig1}
|
||||
\end{figure}
|
||||
%
|
||||
% \begin{figure}
|
||||
% \vskip 6cm
|
||||
% \special{psfile=fzd/pig1.ps hoffset=0 voffset=0 hscale=40 vscale=40}\caption[Pure Intersection Zone Capture Method]{
|
||||
% Coloured Directed Graph of Pure Intersection Chain
|
||||
% \label{fig:pig1}}
|
||||
% \end{figure}
|
||||
|
||||
|
||||
|
||||
\begin{figure}
|
||||
\vskip 6cm
|
||||
\special{psfile=fzd/pig2.ps hoffset=0 voffset=0 hscale=40 vscale=40}\caption[Pure Intersection Zone Capture Method]{
|
||||
Coloured Directed Graph of Pure Intersection Chain with an implicit Enclosure
|
||||
\label{fig:pig2}}
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=200pt,bb=0 0 352 307,keepaspectratio=true]{fzd/pig2.jpg}
|
||||
% pig2.jpg: 489x427 pixel, 100dpi, 12.42x10.85 cm, bb=0 0 352 307
|
||||
\caption{Coloured Directed Graph of Pure Intersection Chain with an implicit enclosure}
|
||||
\label{fig:pig2}
|
||||
\end{figure}
|
||||
%
|
||||
% \begin{figure}
|
||||
% \vskip 6cm
|
||||
% \special{psfile=fzd/pig2.ps hoffset=0 voffset=0 hscale=40 vscale=40}\caption[Pure Intersection Zone Capture Method]{
|
||||
% Coloured Directed Graph of Pure Intersection Chain with an implicit Enclosure
|
||||
% \label{fig:pig2}}
|
||||
% \end{figure}
|
||||
|
||||
|
||||
\subsubsection { Graph Traversal }
|
||||
@ -538,31 +594,53 @@ Multiple intersections due to enclosure are discovered by traversing the
|
||||
enclosure relations.
|
||||
\par
|
||||
|
||||
\label{fzd}
|
||||
\begin{figure}
|
||||
\vskip 6cm
|
||||
\special{psfile=fzd/abc1.eps hoffset=0 voffset=0 hscale=60 vscale=60}\caption[Pure Intersection Zone Capture Method]{
|
||||
Circular reference with multiple zone
|
||||
\label{fig:abc1}}
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=200pt,bb=0 0 375 377,keepaspectratio=true]{fzd/abc1.jpg}
|
||||
% abc1.jpg: 521x524 pixel, 100dpi, 13.23x13.31 cm, bb=0 0 375 377
|
||||
\caption{circular Reference with multiple zone}
|
||||
\label{fig:abc1}
|
||||
\end{figure}
|
||||
%
|
||||
% \label{fzd}
|
||||
% \begin{figure}
|
||||
% \vskip 6cm
|
||||
% \special{psfile=fzd/abc1.eps hoffset=0 voffset=0 hscale=60 vscale=60}\caption[Pure Intersection Zone Capture Method]{
|
||||
% Circular reference with multiple zone
|
||||
% \label{fig:abc1}}
|
||||
% \end{figure}
|
||||
|
||||
|
||||
\label{fzd}
|
||||
\begin{figure}
|
||||
\vskip 6cm
|
||||
\special{psfile=fzd/abc2.eps hoffset=0 voffset=-20 hscale=60 vscale=60}\caption[Pure Intersection Zone Capture Method]{
|
||||
Circular reference without multiple zone
|
||||
\label{fig:abc2}}
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=200pt,bb=0 0 390 371]{fzd/abc2.jpg}
|
||||
% abc2.jpg: 542x515 pixel, 100dpi, 13.77x13.08 cm, bb=0 0 390 371
|
||||
\caption{Circular reference without multiple zone}
|
||||
\label{fig:abc2}
|
||||
\end{figure}
|
||||
%
|
||||
% \label{fzd}
|
||||
% \begin{figure}
|
||||
% \vskip 6cm
|
||||
% \special{psfile=fzd/abc2.eps hoffset=0 voffset=-20 hscale=60 vscale=60}\caption[Pure Intersection Zone Capture Method]{
|
||||
% Circular reference without multiple zone
|
||||
% \label{fig:abc2}}
|
||||
% \end{figure}
|
||||
|
||||
|
||||
\label{fzd}
|
||||
\begin{figure}
|
||||
\vskip 6cm
|
||||
\special{psfile=fzd/abcgraph.ps hoffset=0 voffset=-10 hscale=30 vscale=30}\caption[Pure Intersection Zone Capture Method]{
|
||||
Pure Intersection Zone and Enclosure
|
||||
\label{fig:abcgraph}}
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=200pt,bb=0 0 642 482,keepaspectratio=true]{fzd/abcgraph.jpg}
|
||||
% abcgraph.jpg: 891x669 pixel, 100dpi, 22.63x16.99 cm, bb=0 0 642 482
|
||||
\caption{Pure Intersection Zone and Enclosure}
|
||||
\label{fig:abdgraph}
|
||||
\end{figure}
|
||||
%
|
||||
% \label{fzd}
|
||||
% \begin{figure}
|
||||
% \vskip 6cm
|
||||
% \special{psfile=fzd/abcgraph.ps hoffset=0 voffset=-10 hscale=30 vscale=30}\caption[Pure Intersection Zone Capture Method]{
|
||||
% Pure Intersection Zone and Enclosure
|
||||
% \label{fig:abcgraph}}
|
||||
% \end{figure}
|
||||
|
||||
In order to examine multiple intersections, the spanning tree from the contour under inspection must be
|
||||
recursively iterated (only within the pure intersection chain it belongs to i.e. within the subset $G$).
|
||||
@ -767,12 +845,21 @@ This diagram therefore requires $128 + 2.(9 + 9) \equiv 146 $ area compares.
|
||||
2.N^{2} + \frac{N}{4}.(18)
|
||||
\endequation
|
||||
|
||||
\begin{figure}
|
||||
\vskip 6cm
|
||||
\special{psfile=fzd/tripples.ps hoffset=0 voffset=-10 hscale=40 vscale=40}\caption[Two Enclosed Venn 3]{
|
||||
Two Enclosed Ven 3
|
||||
\label{fig:tev3}}
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=200pt,bb=0 0 585 410,keepaspectratio=true]{fzd/tripples.jpg}
|
||||
% tripples.jpg: 813x569 pixel, 100dpi, 20.65x14.45 cm, bb=0 0 585 410
|
||||
\caption{Two Enclosed Venn 3}
|
||||
\label{fig:tev3}
|
||||
\end{figure}
|
||||
%
|
||||
% \begin{figure}
|
||||
% \vskip 6cm
|
||||
% \special{psfile=fzd/tripples.ps hoffset=0 voffset=-10 hscale=40 vscale=40}\caption[Two Enclosed Venn 3]{
|
||||
% Two Enclosed Ven 3
|
||||
% \label{fig:tev3}}
|
||||
% \end{figure}
|
||||
|
||||
|
||||
\subsection {Extrapolating for N Contour Diagrams}
|
||||
@ -784,21 +871,36 @@ against diagram complexity
|
||||
can be drawn. These graphs clearly shows that the fzd method efficiency increases with the
|
||||
number of contours in a diagram.
|
||||
|
||||
|
||||
\begin{figure}
|
||||
\vskip 6cm
|
||||
\special{psfile=fzd/perf1.ps hoffset=0 voffset=-10 hscale=60 vscale=60}\caption[Performance Comparison]{
|
||||
Perfomance from 0 to 8 contours
|
||||
\label{fig:perf1}}
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=200pt,bb=0 0 414 308,keepaspectratio=true]{fzd/perf1.jpg}
|
||||
% perf1.jpg: 575x428 pixel, 100dpi, 14.60x10.87 cm, bb=0 0 414 308
|
||||
\caption{Performace from 0 to 8 contours}
|
||||
\label{fig:perf1}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}
|
||||
\vskip 6cm
|
||||
\special{psfile=fzd/perf2.ps hoffset=0 voffset=-10 hscale=60 vscale=60}\caption[Performance Comparison]{
|
||||
Performance from 8 to 64 contours
|
||||
\label{fig:perf2}}
|
||||
% \begin{figure}
|
||||
% \vskip 6cm
|
||||
% \special{psfile=fzd/perf1.ps hoffset=0 voffset=-10 hscale=60 vscale=60}\caption[Performance Comparison]{
|
||||
% Perfomance from 0 to 8 contours
|
||||
% \label{fig:perf1}}
|
||||
% \end{figure}
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=200pt,bb=0 0 414 308,keepaspectratio=true]{fzd/perf2.jpg}
|
||||
% perf2.jpg: 575x428 pixel, 100dpi, 14.60x10.87 cm, bb=0 0 414 308
|
||||
\caption{Performace from 8 to 64 contours}
|
||||
\label{fig:perf2}
|
||||
\end{figure}
|
||||
|
||||
% \begin{figure}
|
||||
% \vskip 6cm
|
||||
% \special{psfile=fzd/perf2.ps hoffset=0 voffset=-10 hscale=60 vscale=60}\caption[Performance Comparison]{
|
||||
% Performance from 8 to 64 contours
|
||||
% \label{fig:perf2}}
|
||||
% \end{figure}
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% ALREADY DONE ! Obscuration is now only looked at within pure intersection chains.
|
||||
|
BIN
fzd/perf1.jpg
Normal file
After Width: | Height: | Size: 26 KiB |
BIN
fzd/perf2.jpg
Normal file
After Width: | Height: | Size: 25 KiB |
BIN
fzd/pic.jpg
Normal file
After Width: | Height: | Size: 30 KiB |
BIN
fzd/pice.jpg
Normal file
After Width: | Height: | Size: 28 KiB |
BIN
fzd/piee.jpg
Normal file
After Width: | Height: | Size: 28 KiB |
BIN
fzd/pig1.jpg
Normal file
After Width: | Height: | Size: 9.3 KiB |
BIN
fzd/pig2.jpg
Normal file
After Width: | Height: | Size: 8.6 KiB |
BIN
fzd/simple.jpg
Normal file
After Width: | Height: | Size: 42 KiB |
BIN
fzd/tripples.jpg
Normal file
After Width: | Height: | Size: 47 KiB |